Motivation

- Characterisation and monitoring of in-situ remediation of chlorinated hydrocarbon contamination using an interdisciplinary approach (MIRACHL project)
- Geophysical induced polarisation (IP) measurements useful for knowledge about (e.g.) resistivity, hydrogeological parameter, inner structure of a material/sample

Can bacteria affect the geophysical induced polarisation (IP) signal?

How do bacteria affect the geophysical IP signal?

How much do the bacteria influence the IP signal?

Scientific question

- Idea/Experiment: Microbiological and geophysical laboratory investigation of bacteria in a sand environment
- Two experiments were conducted

Microbiology

Investigating the influence of Escherichia coli (E. coli) on sand:

Experiment 1:
- **step 1:** 9 individual samples filled with sand, media (nutrient food) and E. coli bacteria
- **step 2:** 8 individual samples filled only with sand and media
- **step 3:** 9 individual samples filled only with sand and water

Experiment 2:
- **step A:** 9 individual samples filled with sand, media and E. coli (just like step 1/Exp. 1)
- **step B:** 9 individual samples filled with sand, media and E. coli (double amount)

All material was sterilised before and the prepared samples were incubated in a temperature controlled shaker at 30°C with gentle mixing (fig. 1a–c).

To ensure E. coli was growing, parts of the fluid were put on agar plates, incubated at 37°C overnight and counted (fig. 1d).

Experiment results

- After two days the maximum number of living bacteria was reached. Thereafter the bacteria decreased/dead (fig. 4a).
- Fluid conductivity is higher when (E.coli) bacteria are present (13 - 16 mS/cm, fig. 3) due to the presence of bacterial cells and/or their degradation products
- In general, SIP resistivity values are smaller for the E.coli than for the media and water samples (fig. 5a, c, d). This is in accordance with the fluid conductivity (fig. 3)
- The SIP phase signals are higher for the E.coli samples than for the media and water samples. Although, the signals are very small and no tendency apparent
- Differences in bacteria concentration (step A and step B) affect fluid conductivity (fig. 4b)
- pH is similar for the first 5 days, afterwards divergent (fig. 4c)

Conclusion & Outlook

- Bacteria influence the IP signal
- Resistivity is decreasing with increasing bacteria density
- Even small amounts of bacteria (0.1%) inoculation decrease the resistivity significantly
- Also dead bacteria influences the resistivity
- Phase is increasing with bacteria but very slightly and without significant trends so far

Outlook: further IP experiments are necessary to:

- Improve the measurement technique and the experimental set up
- Investigate natural contaminated soil samples
- Measure in time domain IP

Geophysics

Scientific question

- To measure IP, the samples were taken out at different days to ensure different amounts of bacteria
- The sand was filtered to separate the fluid (fig. 2a) and carefully packed in the SIP sample holder (fig. 2b)
- Samples were measured immediately with SIP (fig. 2c) after packing and held in the sample holder for at least 24h, during which the samples were measured repeatedly (at least 3 times)
- Fluid conductivity, pH and temperature of the liquid removed by filtering were also measured

SEM/qPCR

DNA analysis was carried out and SEM (scanned electron microscopy) pictures were taken afterwards to confirm the bacteria in the sand.

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 665778. Additional funding was received from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and the Swedish Geological Survey through the MIRACHL project (grant number: 2016-20099)

Contact Information

Tina Martin, email: tina.martin@igf.lth.se
Catherine Paul, email: catherine.paul@tvrl.lth.se
Sofia Åkesson, email: sofia.akesson@geol.lu.se

October 2019